
Pat Langley
Institute for the Study of
Learning and Expertise

Palo Alto, California

The Computational Gauntlet
of Human-Like Learning

This research was supported by ONR Grant N00014-20-1-2643 and by AFOSR Grant
FA9550-20-1-0130. Thanks to many colleagues for discussions that led to these ideas.

Despite its modest origins, machine learning has come to play
a dominant role in artificial intelligence.

Statistical induction on massive data sets has led to impressive
results in multiple areas, including:
• Computer vision
• Natural language
• Game playing

But in the process, the field has lost its intellectual diversity
and abandoned its conceptual roots.

Claim: We can remedy both drawbacks, and devise even more
effective systems, by focusing on human-like learning.

The Problem

2

Consider how students master mathematics in our educational
system by learning, successively, to:

• Recognize and write digits
• Retrieve and use arithmetic tables
• Carry out multi-column addition, subtraction
• Simplify complex fractions
• Solve algebraic equations, word problems

This curriculum takes years, but it does not require thousands
of instances per concept or skill.

The trajectory of human learning here differs drastically from
how we currently train machines.

Example: Learning Mathematics

3

3 7
6

4

2 × 1 = 2, 2 × 2 = 4, 2 × 3 = 6
327

⎼ 64
3/4 + 1/8 = ?

7x ⎼ 5 = 2x

Now consider how people – often teenagers – learn to drive
an automobile by acquiring:

• Categories for roads, lanes, intersections, signs

• Skills for changing lanes, passing, turning, parking

• Social norms for driving, including laws and customs

Mastering these elements requires training and practice, but
most drivers are reasonably good after a short course.

Unlike statistical learners, humans do not need millions of
miles’ experience to acquire basic competence.

Example: Learning to Drive

4

Machine learning was founded more than four decades ago
as a spinoff of mainstream AI:

• First workshop 1980, Journal 1986, Conference 1988
• Focused initially on acquiring symbolic structures
• Concerned with automating creation of expert systems
• But also with modeling high-level learning in humans

This paradigm was successful, producing demonstrations of
new capabilities and deployed systems.

During this early period, links to cognitive psychology played
key roles in the field’s aims and progress.

Machine Learning: A Brief History

5

The new discipline of machine learning evolved rapidly and,
by the mid-1990s, it had:

• Redefined learning as improvement of performance

• Broadened to include statistical methods and neural nets

• Adopted controlled experiments for evaluation purposes

• Birthed the closely related discipline of data mining

Each step seemed a positive one but also took the field further
away from its psychological origins.

More recent results on learning with deep neural networks
have only worsened the situation.

Machine Learning: More History

6

Machine learning is widely viewed as a great success, but the
most popular approaches depend crucially on:

• Collection of gigantic training sets
• Storage of these data in massive memories
• Processing them on arrays of CPU servers

Progress is often measured using mindless ‘bake offs’ that can
rely on questionable metrics.
• Recent results with large language models are impressive but

they are fragile and depend on skilled prompting.

These ‘state of the art’ learning systems bear little resemblance
to the way humans acquire expertise.

Current State of the Field

7

To develop AI systems that learn like people, we must first
identify the core features of human learning:

• High-level regularities observed in human cognition

• Recurring phenomena that hold across many settings

• Laws of qualitative structure (Newell & Simon, 1976)

• Not detailed models that fit specific experimental results

Insights about the character of human learning can serve as
strong constraints on system design.

But how might researchers use such constraints effectively?

Constraints on Learning

8

A Computational Gauntlet

A gauntlet is a passage, lined with armed adversaries, that one
must traverse to survive a trial.

• We can use characteristics of human learning
to devise a computational gauntlet.

• Each constraint introduces a new threat that
AI systems must encounter and overcome.

• To reach the end, they must make it past each
obstacle along the dangerous path.

This offers a radical alternative to the performance-oriented
‘bake offs’ that now guide the field.
But what aspects of human learning can serve this purpose?

9

Modular Structures

One basic feature of human learning (Bower, 1981) concerns
the nature of acquired content:

• Learning involves the acquisition of modular cognitive
structures.

This does not specify the structures’ details; only that expertise
consists of discrete mental elements.

This contrasts sharply with the idea that learning only revises
parameters in an existing monolithic structure.

E.g., most neural networks alter the weights on links between
nodes that are given in advance, rather than acquired.

10

Composable Elements

A second characteristic is enabled by the first one and often
associated with it closely:

• Learned cognitive structures can be composed during
performance.

That is, relevant elements of expertise are accessed and then
combined as needed to produce behavior.

E.g., planning systems and sentence parsers compose learned
structures to address multi-step tasks.

Neural networks propagate activations over links, but many
question their capacity for compositional reasoning.

11

There have been many proposals for modular, composable
structures from psychology, AI, and linguistics:

• Chunks (Miller, 1956)

• Exemplars / Cases (Schank, 1982)

• Grammar rules (Chomsky, 1965)

• Production rules (Newell, 1966)

• Planning operators (Fikes & Nilsson, 1971)

• Stimulus-response pairs (Skinner, 1953)

These differ in details, but all are composable at performance
time, qualifying them as generative models.

Examples of Composable Structures

12

Piecemeal Acquisition

Another feature involves how people process experiences and
create new structures. In particular:

• Expertise is acquired in a piecemeal manner, with one
element added at a time.

Humans learn one cognitive structure, then another, continuing
until they achieve broad coverage.

E.g., they acquire each concept and skill for mathematics and
driving in a reasonably independent manner.

They do not create complex models en masse, as done by most
methods for statistical induction.

13

Incremental Learning

Another processing constraint focuses not on the knowledge
elements but on handling training cases:

• Learning is an incremental activity that processes one
experience at a time.

This is linked to on-line approaches that interleave learning
tightly with performance mechanisms.

E.g., people process the training events for mathematics and
driving in an ongoing stream, not all at once.

Incremental and piecemeal learning can co-occur, but they are
distinct; e.g., most rule induction is piecemeal but batch.

14

Guidance from Knowledge

The sequential nature of human learning also means that later
processing builds on previous results:

• Learning is guided by knowledge that aids the interpretation
of new experiences.

Because acquisition is piecemeal and incremental, it occurs in
the context of existing mental structures.

E.g., complex skills for both mathematics and driving build on
simpler ones acquired earlier in training.

Knowledge is central to human learning but it receives limited
attention in data-intensive paradigms.

15

Rapid Acquisition

A final characteristic of human learning, enabled by piecemeal,
incremental, and knowledge-guided processing, is that:

• Cognitive structures are acquired and refined rapidly, each
from small numbers of training cases.

The claim is not that all expertise comes from a few instances,
but that we learn modular elements this way.

Human learning curves in mathematics and driving, which
plot performance vs. training cases, are very steep.

Again, this diverges from statistical induction’s dependence on
thousands or millions of items.

16

Critiques and Responses

17

• Why change paradigms when deep learning works so well?

• Because it is not as data efficient as human learners. And we
should understand the entire space of learning methods.

• Why build AI systems that learn like people? (planes ≠ birds)
• Birds offer many insights into flight (e.g., lift, thrust, and drag).

And we now have small drones that fly very much like birds.
• Is this about structure learning vs. parameter estimation?
• No, the question is whether a learner relies only on parameter

estimation or, like humans, acquires new structures.
• Are you saying that human learning never involves statistics?
• No, but the rapid acquisition of new structures is a distinctive

feature of human learning; statistics is a background process.

The literature contains some cases of human-like learning that
count as positive instances:
• Fisher’s (1987) Cobweb – constructs a probabilistic conceptual

taxonomy from unsupervised training cases
• Minton’s (1990) Prodigy – acquires control rules from planning

traces to guide search on future problems
• McClure et al.’s (2015) SAGE – invokes structural analogy to

learn relational concepts from training sequences
• Muggleton et al.’s (2018) meta-interpretive learning – acquires

logic-based concepts very rapidly

These systems fare well on the gauntlet and offer useful role
models for the research community.

Examples of Human-Like Learning

18

Fisher’s (1987) Cobweb is a process model of categorization
and category learning that:

• Constructs a taxonomy of probabilistic concept descriptions
• Terminal nodes are cases; nonterminals summarize descendants

• Sorts new cases down the hierarchy guided by category utility
• On halting, uses selected concept node to predict missing values

Cobweb unifies ideas from decision trees, naive Bayes, and
nearest neighbor classifiers.

The system replicates well-known psychological phenomena
like basic-level categories and typicality effects.

Probabilistic Concept Hierarchies

19

20

30 J.H. GENNARI ET AL.

Fig. 3. A sample COBWEB hierarchy with nodes numbered in order of creation.

3.3.2. Classification and learning in COBWEB

The basic COBWEB algorithm is quite simple, as can be seen from the
summaries in Tables 5 and 6. Again classification and learning are intertwined,
with each instance being sorted down through a concept hierarchy and altering
that hierarchy in its passage. The system initializes its hierarchy to a single
node, basing the values of this concept 's attributes on the first instance. Upon
encountering a second instance, COBWEB averages its values into those of the
concept and creates two children, one based on the first instance and another
based on the second.

Unlike EPAM and UNIMEM, Fisher's model does not use explicit tests or
indices to retrieve potential categories. Instead, at each node COBWEB retrieves
all children and considers placing the instance in each of these categories. Each
of these constitutes an alternative clustering (a set of clusters with a common
parent) that incorporates the new instance. Using an evaluation function that
we describe in Section 3.3.3, it then selects the best such clustering. COBWEB
also considers creating a new category that contains only the new instance, and
compares this clustering to the best clustering that uses only existing categories.

If the clustering based on existing classes wins the competition, COBWEB
modifies the probability of the selected category and the conditional prob-

C O N C E P T F O R M A T I O N 35

Gluck and Corter build on expression (2) in their derivation. They define
category utility as the increase in the expected number of attribute values that
can be correctly guessed, given a set of n categories, over the expected number
of correct guesses without such knowledge. The latter term is simply

II 2 (E i E j P (A i = ~)) , so one must subtract this from expression (2). The
complete expression for category utility is thus

K
P(Ck) ~, ~'~ P(A i = V~j[Ck) 2 -- ~ ' ~ P(Zi : V0.) 2

k:l i j i j (3)
K

Note that the difference between the two expected numbers is divided by K,
the number of categories. This division lets one compare different size cluster-
ings, which must occur whenever one considers merging, splitting, or creating a
new category.

Since category utility is based on expected numbers of correct guesses about
attribute values, it suggests predictive ability as the natural measure of
behavior. Fisher has tested COBWEB on both natural and artificial domains,
measuring its performance by asking it to predict missing attribute values on
test instances. This approach is similar to Quinlan's [34] methodology for
evaluating supervised learning systems, except that one averages across many
attributes rather than predicting a single one (the class name). In Section 4, we
will extend this notion of prediction (and category utility) to domains involving
numeric attributes.

COBWEB is not the first inductive learning system that has employed an
evaluation function based on information theory. The best-known work of this
type is Quinlan's [34] ID3 method for constructing decision trees. Machine
learning researchers have explored many extensions and variations of the basic
technique, including incremental versions (Schlimmer and Fisher [38]). Ren-
dell et al.'s [35] PLS system also uses an information-theoretic metric to direct
its divisive construction of disjunctive concept descriptions. In addition, Han-
son and Bauer [16] have used an information-based function in their WITT
clustering system, Cheeseman et al. [6] have used a Bayesian approach in their
nonincremental clustering system AUTOCLASS, and Anderson (personal com-
munication) has used conditional probabilities in his recent work on incremen-
tal clustering.

3.3.4. Comments on COBWEB
Like its predecessors, one can view C O B W E B as carrying out a hill-climbing
search through a space of concept hierarchies. In this case, there are four main
operators:

-classifying the object into an existing class;
-creating a new class (a new disjunct);

Early extensions to Cobweb let it handle numeric
attributes and structured data, as well as mitigate
dependence on the order of training cases.

A Cobweb Hierarchy

Category
Utility

Cobweb Examples and Results

0 10 20 30 40 50 60 70 80 90 100
Number of Instances Seen

(a)

0
10

20
30

40
50

60
70

80
90

10
0

Pr
ed

ic
tiv

e
Ac

cu
ra

cy

Arachne
Cobweb

0 10 20 30 40 50 60 70 80 90 100
Number of Instances Seen

(b)

0
10

20
30

40
50

60
70

80
90

10
0

Pr
ed

ic
tiv

e
Ac

cu
ra

cy

Arachne
Cobweb

Congressional Voting

0 10 20 30 40 50 60 70 80 90 100
Number of Instances Seen

(a)

0
10

20
30

40
50

60
70

80
90

10
0

Pr
ed

ic
tiv

e
Ac

cu
ra

cy

Arachne
Cobweb

0 10 20 30 40 50 60 70 80 90 100
Number of Instances Seen

(b)

0
10

20
30

40
50

60
70

80
90

10
0

Pr
ed

ic
tiv

e
Ac

cu
ra

cy
Arachne
Cobweb

Soybean Data

Cobweb interleaves learning with categorization to construct
its hierarchy from unsupervised data by:
• Updating the distribution for concepts to which a case is sorted

• Extending the taxonomy downward on reaching a terminal node

• Adding a new branch when no children are similar enough

• Merging / splitting a node’s children if category utility improves

The system learns categories very rapidly in an incremental,
piecemeal way that builds on prior acquisitions.

Each Cobweb training case leads to both the creation of new
cognitive structures and revision of statistical summaries.

Learning Concept Hierarchies

21

Recent Extensions to Cobweb

22

The original Cobweb dealt with ‘tabular’
encodings, but an extension incorporates
convolutional processing of images.

MacLellan and Thakur (2021) report
comparisons of the extended Cobweb
with a convolutional neural network
on the MNIST image repository.

CONVOLUTIONAL COBWEB

Figure 3. Examples of the two internal hierarchies learned by Convolutional Cobweb. Shown on the top is a
hierarchy of 3x3 convolutional filters learned directly from the images. Shown on the bottom is a hierarchy
of concepts learned over the convolutional filter representations.

5

0.25

0.50

0.75

1.00

0 100 200 300
Training Opportunities

E
rr
or

Model
CNN
CNN-Simple
Cobweb/3
Convolutional Cobweb

We have also developed a contextual
version of Cobweb that distinguishes
word senses in textual sequences.

Recent efficiency improvements should
let it acquire a large language model
from a corpus with millions of words.

Minton’s (1990) Prodigy offers an architecture for knowledge-
guided planning that:

• Encodes knowledge as domain operators and control rules for
selecting or rejecting goals, operators, or bindings

• Invokes means-ends analysis to carry out goal-directed search
in a space of problem decompositions

• Uses control rules to reduce search by blocking poor choices
and favoring good ones

Prodigy’s reliance on means-ends analysis is consistent with
studies of human problem solving.

The system unifies AI’s four key ideas: reasoning, heuristic
search, knowledge, and learning.

Knowledge-Guided Planning

23

Prodigy acquires planning expertise from traces of its own
search processes by:
• Using a generic theory of problem solving to explain why each

choice led to success or failure
• Compiling each explanation into a control rule for selecting or

rejecting a goal, operator, or binding
• Collecting statistics on these rules’ utilities to determine which

ones to retain or abandon

The system substantially reduces both nodes examined and
CPU time to solve new problems in many domains.

Prodigy combines rapid generation of new structures through
knowledge with their gradual evaluation by statistics.

Learning Search-Control Knowledge

24

Prodigy Examples and Results

25

378 s. MINTON

8

6000

5000 - - .

4000

3000

2000

1000

S T R I P S Robo t Domain

1 1 1
-- -- - Hand -coded rules
- - Learned rules

No control rules

..oO"
.°..

,°,'"

.....o.-'"
. " ' . , _ ,~ - , 1 , , , - ' , , ' ~ - -

1 0 2 0

.°° ,° .°.
°,.

°,* °,
°.° ,.o

~o..°°

J

° °.° ,°
. ° . ° ° °'°

J

30 40 50 60 70 80 90 100
Number of Problems

Scheduling Domain

3500

3 0 0 0 - -

2500

2000

1500

1000.

500

0

. * *
° . . "

-- -- - Hand-coded rules
- - Lea rned ru les . "
......... No con t ro l r u l es °*" . * '

I
10

...~...jl j

.-* *'"° J

20 30 40 50 60 70 80 90 100
Number of Problems

Fig. 2. Continued.

Table 2
Number of unsolved test problems (within 80 CPU seconds)

Blocks STRIPS Scheduling
domain domain domain

With hand-coded rules 0 1 4
With learned rules 2 3 7
Without rules 19 49 32

378 s. MINTON

8

6000

5000 - - .

4000

3000

2000

1000

S T R I P S Robo t Domain

1 1 1
-- -- - Hand -coded rules
- - Learned rules

No control rules

..oO"
.°..

,°,'"

.....o.-'"
. " ' . , _ ,~ - , 1 , , , - ' , , ' ~ - -

1 0 2 0

.°° ,° .°.
°,.

°,* °,
°.° ,.o

~o..°°

J

° °.° ,°
. ° . ° ° °'°

J

30 40 50 60 70 80 90 100
Number of Problems

Scheduling Domain

3500

3 0 0 0 - -

2500

2000

1500

1000.

500

0

. * *
° . . "

-- -- - Hand-coded rules
- - Lea rned ru les . "
......... No con t ro l r u l es °*" . * '

I
10

...~...jl j

.-* *'"° J

20 30 40 50 60 70 80 90 100
Number of Problems

Fig. 2. Continued.

Table 2
Number of unsolved test problems (within 80 CPU seconds)

Blocks STRIPS Scheduling
domain domain domain

With hand-coded rules 0 1 4
With learned rules 2 3 7
Without rules 19 49 32

STRIPS Robot

Scheduling

QUANTITATIVE RESULTS ON UTILITY OF EBL 375

logical t ransformations carry out more complex manipulations such as raising
common subexpressions. These first two stages terminate relatively quickly
given the set of t ransformations currently in the system. In the third stage, a
simple theorem prover applies optional, user-supplied simplification axioms,
each of which encodes a t ransformation, using a variation of Brown's scheme
[1]. Since theorem proving is a potentially unbounded process, PRODIGY will
terminate this process if it exceeds a specified time limit.

In practice, we have found that compression is crucial for making EBL useful
in PRODIGY. Compress ion eliminates a significant amount of redundancy in the
learned rules. The majori ty of the simplifications involve very simple reduc-
tions and reorderings; however, without these simplifications, the learned
control rules would have hundreds, if not thousands of terms. For example, the
architecture-level axioms for FAILS require several pages of dense logical
notation. Without compression, the descriptions learned by analyzing failures
tend to be pages long, and highly redundant .

5.3. Evaluating the utility of an explanation

The utility of a control rule learned by PRODIGY'S EBS process is measured in
terms of the speedup that results f rom the rule's use. Specifically, utility is
given by the cost /benefi t formula:

Utility = (Av rS a v i n gs × App l i cFreq) - A v r M a t c h C o s t ,

where AvrSav ings is the average time savings produced when the rule is
applicable due to the fact that search is eliminated, Appl i cFreq is the probabili-
ty that the rule is applicable when it is tested, and A v r M a t c h C o s t is the average
time cost of matching the rule.

After learning a control rule, PRODIGY produces an initial estimate of the
rule's utility based on the training example that produced the rule. Specifically,
the system compares the t ime cost of matching the rule against the time savings
that the rule would have produced by eliminating search. Only if the savings
outweigh the cost is the rule included in the active set of control rules. This

6 estimation phase eliminates rules that are obviously poor.
After a rule is added to the system, PRODIGY at tempts to empirically

validate the utility est imate, so that it can discard any remaining rules which

o An important side-effect of this process is that it prevents ineffective rules from participating in
the explanation process. For each control rule in the system, there is a corresponding domain-level
axiom that is built so that, for instance, if a rejection rule fires, PRODIGY can explain why the
rejected alternative was rejected. When poor rules are added to the system, they tend to degrade
the explanations produced during the time that they are present, leading to a snowballing effect
where more and more poor rules are learned.

QUANTITATIVE RESULTS ON UTILITY OF EBL 373

describing the task domain. Whereas the architectural-level axioms are hand-
crafted, the domain-level axioms are automatically derived f rom the problem
solving operators and any existing search control rules. To construct an
explanation, an algorithm called explanation-based specialization (EBS) is used.
EBS maps directly f rom the problem solving trace into an explanation, as
described in [23]. No search is involved, since the explanation is determined
completely by the problem solving trace. The EBS algorithm then finds the
weakest preconditions of the explanation, which constitutes the initial learned
description.

5.2. Compression: Improving an explanation

The purpose of compression is to reduce the match cost of the descriptions
produced by EBS (and thereby increase the utility of the resulting search
control rules). Compression is essentially a simplification process. PRODIGY'S
compressor module operates on the learned description, first employing partial
evaluation [15], then applying domain- independent logical t ransformations, 4
and finally calling a theorem prover which can take advantage of user-supplied,
domain-specific simplification axioms. 5 To illustrate the effect of compression,
let us consider a very simple blocks world example. An initial learned
description, which states that (ON x x) is unachievable, can be simplified as
shown below. To do so the compressor employs some simple equivalence
preserving transformations and a domain-specific simplification axiom stating
that a block is either on the table, on another block, or being held.

(FAILS goal node)
if (AND (CURRENT-GOAL node goal)

(MATCHES goal (ON x y))
(OR (AND (KNOWN (ON-TABLE y))

(EQUAL X y))
(AND (KNOWN (ON y z))

(EQUAL X y))
(AND (KNOWN (HOLDING y))

(EQUAL X y))))

4 PRODIGY's domain-independent transformations enable it to take advantage of standard
simplification rules, such as DeMorgan's law, as well as other transformations that are more
specific to the architecture, such as conjunct ordering heuristics.

5 The simplification axioms are optional. They are used because the domain operators do not
describe the domain completely. In particular, the set of legal initial states is unspecified. For
example, one simplification axiom for the blocks world states that the robot can be holding only
one block at a time, a fact that is impossible to ascertain from the operators alone. For each of the
domains described in this paper, the set of simplification axioms is very small.

374 s. MINTON

reduces to

(FAILS goal node)
if (AND (CURRENT-GOAL node goal)

(MATCHES GOAL (ON X X)))

In addition to simplifying individual descriptions, the compressor can also
combine results from multiple examples in order to reduce total match cost. A
very simple example is shown below. The first rule in the figure states that the
goal (HOLDING X) will succeed (i.e., can be achieved) if block x is on the table.
The second rule indicates that the goal (HOLDING y) will succeed if block y is
on another block. These can be compressed into a single rule stating that a goal
(HOLDING Z) will always succeed, since the block z must be either on the table
or on another block.

(SUCCEEDS goal node)
if (AND (CURRENT-GOAL node goal)

(MATCHES goal (HOLDING x))
(KNOWN node (IS-BLOCK x))
(KNOWN node (ON-TABLE x)))

(SUCCEEDS goal node)
if (AND (CURRENT-GOAL node goal)

(MATCHES goal (HOLDING y))
(KNOWN node (IS-BLOCK y))
(KNOWN node (IS-BLOCK w))
(KNOWN node (ON y w)))

reduce to

(SUCCEEDS goal node)
if (AND (CURRENT-GOAL node goal)

(MATCHES goal (HOLDING z)))

The compressor's task of minimizing description's match cost is, unfortunate-
ly, undecidable. To see this, consider that the most inexpensive descriptions to
match are (TRUE) and (FALSE), Therefore an optimal compressor would be
able to reduce all valid formulas to (TRUE) and all unsatisfiable formulas to
(FALSE). However, arbitrary first-order sentences can be represented in PRO-
DIGY'S description language, and this task is undecidable for first-order logic.

In fact, PRODIGY'S compressor is not guaranteed to minimize match cost.
The compressor employs a set of heuristic transformations, each of which tends
to reduce match cost. In the first stage of compression, individual atomic
formulas are transformed to less expensive formulas (e.g., TRUE and FALSE)
via partial evaluation. In the second stage of compression, domain-independent

A Prodigy Rejection Rule

A Prodigy Selection Rule

Prodigy’s Utility Criterion

Prodigy’s many successors supported planning
by abstraction, analogical problem solving, and
learning for plan quality rather than efficiency.

0 5 10 15 20 25 30
Number of training problems

0.
0

50
00

10
00

0
15

00
0

20
00

0
N

um
be

r o
f d

ec
om

po
si

tio
ns

Unless
Learn
Expert

26

HPN Methods for Logistics

Hierarchical Problem Networks

at o1 l3

drive-truck t1 l1 l3 c1

unload-truck o1 t1 l3

at t1 l3in o1 t1

load-truck o1 t1 l1

at t1 l1

drive-truck t1 l2 l1 c1

at o1 l1

at t1 l2in-city l2 c1 in-city l1 c1 in-city l3 c1

1

Table 1. Four methods for logistics planning that include a head, state conditions,

an operator, a subproblem, and optional goal conditions. These partially encode an

HPN procedure that solves problems in the logistics domain efficiently. The notation

assumes that distinct variables will match against different constant expressions. Bold

and italic fonts for some conditions denote sources of learning discussed later.

((at ?o1 ?l3))
conditions: ((object ?o1) (truck ?t1) (location ?l3) (location ?l1)

(in-city ?l3 ?c1) (in-city ?l1 ?c1) (at ?t1 ?l3) (at ?o1 ?l1))
operator: (unload-truck ?o1 ?t1 ?l3)
subproblem: ((at ?t1 ?l3) (in ?o1 ?t1))

((at ?t1 ?l1))
conditions: ((truck ?t1) (location ?l3) (location ?l1)

(city ?c1) (in-city ?l3 ?c1) (in-city ?l1 ?c1)
(in-city ?l2 ?c1) (at ?t1 ?l3))

operator: (drive-truck ?t1 ?l3 ?l1 ?c1)
subproblem: ((at ?t1 ?l3))
unless-goals: ((in ?o ?t1)))

((in ?o1 ?t1))
conditions: ((object ?o1) (truck ?t1) (location ?l1) (location ?l3)

(in-city ?l1 ?c1) (in-city ?l3 ?c1) (at ?t1 ?l3) (at ?o1 ?l1))
operator: (load-truck ?o1 ?t1 ?l1)
subproblem: ((at ?t1 ?l1) (at ?o1 ?l1))

((in ?o1 ?t1)
:conditions ((object ?o1) (truck ?t1) (location ?l1) (airport ?l1)

(location ?l2) (location ?l3) (in-city ?l1 ?c1) (in-city ?l2 ?c1)
(in-city ?l3 ?c2) (at ?t1 ?l2) (at ?o1 ?l3))

:operator (load-truck ?o1 ?t1 ?l1)
:subproblem ((at ?t1 ?l1) (at ?o1 ?l1))

HPNL (Langley, 2022) learns hierarchical
methods from sample solutions to decompose
complex problems into simpler ones.

The system uses domain constraints to
identify conditions on its methods, not
classic EBL or ILP techniques.

A Sample Logistics Plan

HPNL on Logistics

McClure et al.’s (2015) SAGE can acquire complex concept
descriptions from labeled training cases by:

• Representing each concept as a set of relational literals with
associated probabilities

• For each new training case T:
• Using structural analogy to retrieve descriptions similar to T

and selecting the best candidate C
• If C and T match well enough, then using T to update C’s

probabilities and to add new relations
• Else storing a new disjunctive description based on case T

SAGE learns geographical concepts, musical genres, and
object shapes far more rapidly than statistical methods.

Analogical Concept Learning

27

Muggleton et al. (2018) report a new abductive approach to
learning relational logic programs that:

• Uses domain-independent knowledge stated as logical rules

• Searches for simple explanations that cover each case

• Posits new predicates that may be reused in the explanation

• Transforms the explanations into domain rules for later use

Meta-interpretive learning (MIL) masters visual concepts and
control programs very rapidly, often from single cases.

This work demonstrates that representation learning is not
limited to deep neural networks.

Meta-Interpretive Learning

28

Inductive process modeling (Langley,
2019) constructs explanations of time
series from background knowledge.

Discovered models comprise sets of
differential equations organized into
higher-level processes.

29

48 P. Langley

1 3

always increase or decrease over time, as other processes may also influence their
values.

Table 1(a) shows a simple model for an aquatic ecosystem with three variables:
phytoplankton, nitrogen, and detritus. This includes three distinct processes, one
for phytoplankton loss, one for uptake of nitrogen by phytoplankton, and another
for remineralization of nitrogen from detritus. The variables phyto and nitro refer
to the concentrations of phytoplankton and nitrogen, respectively. Each process has
an associated rate expression, one specifying that the rate equals the product of two
variables and the others stating that it equals a single variable. Each process also
includes two associated derivatives that are proportional to the rate, with parameters
detailing this functional dependence. Table 1(b) translates these processes into a set
of differential equations, one per variable, with each term on the right-hand sides
mapping onto an equation fragment in some process. The two notations produce the
same dynamic behavior, but the first one has a higher-level organization.

4 Using rate-based process models

We can use such a quantitative process model by compiling it into a set of differ-
ential equations. For each endogenous variable v, one collects all equation frag-
ments from processes in which v appears on the left-hand side. The differential
equation for that variable has the sum of these fragments as its right-hand side.
This produces a set of linked equations that one can provide to a standard dif-
ferential equation solver like CVODE (Cohen and Hindmarsh 1996) to simulate
the behavior of each variable over time. For this purpose, we must provide not

Table 1 (a) A rate-based process model for an aquatic ecosystem that relates concentrations of phyto-
plankton, nitrogen, and detritus. Each process specifies a rate expression and a set of derivatives propor-
tional to this rate, which changes over time. (b) A set of linked differential equations that produce the
same dynamic behavior as the process model

!!!

Time-series data

Generic processes

Process
models

Organism1 [predator, prey]
Organism2 [predator, prey]

Target variables

!!!

Inductive Process
Modeling

exponential_growth(Organism1)
 rate R = Organism1
 derivatives d[Organism1,t] = a * R
 parameters a = 0.75

holling(Organism2, Organism1)
 rate R = Organism2 * Organism1
 derivatives d[Organism2,t] = b * R,
 d[Organism1,t] = c * R
 parameters b = 0.0024, c = –0.011

!!!

exponential_growth(X [prey]) [growth]
 rate R = X
 derivatives d[X,t] = a * R
 parameters a > 0

holling(X [predator], Y [prey]) [predation]
 rate R = X * Y
 derivatives d[X,t] = b * R, d[Y, t] = c * R
 parameters b > 0, c < 0

P
o

p
u

la
ti

o
n

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Time

0 5 10 15 20 25

X1

X2

X3

X4

X5

X6

X7

X8

X9

X10

X11

X12

X13

X14

X16

X15

X17

X18

X19

X20

A Quantitative Process Model

Trajectories for 20-Organism Food Chain

Inductive Process Modeling

Comparison of Characteristics

Characteristics Deep Net Cobweb Prodigy SAGE Meta-Int

Modular structures � • • • •
Composable elements �· � • � •
Piecemeal learning � • • • •
Incremental processing � • • • �
Knowledge guidance �· • �· • �·
Rapid acquisition � • • • •

We can compare how these systems – and the most popular class of
statistical learners – fare on the computational gauntlet.

The table shows that Cobweb, Prodigy, SAGE, and meta-interpretive
learning all pass most of its challenges.

30

MIL

Some may believe neural networks cannot exhibit human-like
learning, but there are counterexamples:
• Neural networks can support transfer of expertise from earlier

training to produce rapid learning on related tasks.
• Cascade correlation (Fahlman & Lebiere, 1990) learns network

structure in a piecemeal way, adding one node at a time.
• Adaptive Resonance Theory (Grossberg, 1987) is incremental

and piecemeal, adding nodes when none match well enough.

The latter two combine the creation of new structures with
statistical updates, much as Cobweb, Prodigy, and SAGE.

These results suggest the issue lies not with neural networks,
but with how most developers instantiate them.

Can Neural Nets Learn Like Humans?

31

Fostering Work on Human-Like Learning

Research on human-like learning was once widely accepted
by the AI community. How can we restore this vision?

∙ Broaden education to cover classic methods

∙ Expand funding to support human-like approaches

∙ Establish publication venues that value such work

∙ Champion evaluation with computational gauntlets

Together, these steps can help create a Zeitgeist that recaptures
the spirit of early AI and machine learning.

This call to arms echoes similar appeals by Fahlman (2012),
Marcus and Davis (2021), and others.

32

Making the Gauntlet Operational

Before we can use the computational gauntlet for evaluation
of learning systems, we must:

∙ Specify a dependent measure for each hurdle
∙ Some qualitative but others a matter of degree

∙ Provide training sets that allow cumulative learning
∙ To demonstrate ability to benefit from knowledge

∙ Encourage reporting of learning curves
∙ To show rates of improvement and asymptotes

We can then compare these to the characteristics of human
learning in chosen target domains.

33

Summary Remarks

Machine learning, despite impressive advances, has abandoned
many of its early, profound insights.

A promising alternative is to develop AI systems that learn in a
more human-like manner by:

• Acquiring modular, composable structures in a piecemeal,
incremental way, aided by knowledge, from little data.

We can treat these features as design constraints that define a
computational gauntlet for learning systems.

I call on audacious AI researchers to tackle this challenge.

34

Modular

Composable Piecemeal

Incremental Knowledge

Rapid

Hum
an

-L
ike

 Le
ar

nin
g

35

The Computational Gauntlet

